BSc CHEMISTRY

Programme	B.Sc Chemistry						
Course Title	QUANTUM MEC	CHANICS, S	SOLID STA	TE AND GA	SEOUS STATE		
Type of Course	MINOR						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	3	-	2	75		
Pre-requisites	1. Basic idea the st	ructure of at	om				
	2. Fundamentals of	states of ma	atter				
	3. Basic knowledge	e in analytic	al principles				
Course Summary	1. This course	e aims to in	troduce the	failures of c	lassical theories in		
	explaining	explaining many experiments and the emergence of quantum theory.					
	2. This course also aims to realise the theories of different states of						
	matter and their implications.						
	3. This course	also aims to c	levelop profi	ciency in qua	litative analysis		
	and to fami	liarize physi	cal chemistr	y experiments	3		

СО	CO Statement	Cognitiv e Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the importance and the impact of quantum revolution in science.	U	F	Instructor-created exams / Quiz /Assignment
CO2	To evaluate the properties of solids	E	С	Instructor-created exams / Quiz /Assignment
CO3	To analyse the behaviour of gases	An	С	Instructor-created exams / Quiz /Assignment
CO4	To understand the properties of gaseous state and how it links to thermodynamic systems.	U	С	Instructor-created exams / Quiz /Assignment
CO5	To perform the cation analysis on a provided mixture containing two cations.	An	Р	Lab work

CO6	To enable the students to determine	Ap	P	Lab work			
	the physical properties (physical						
	constants).						
* - Remer	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)						
# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive							
Knowledge (M)							

Module	Unit Content			Marks
Ι		Introduction to Quantum mechanics	15	32
	1	Postulates of quantum mechanics – derivation of time-	2	
		independent Schrodinger equation		
	2	Particle in one dimensional box problem- Schrodinger	3	
		equation, derivation for expression of energy, quantisation		
		of energy levels, HOMO-LUMO transition in 1,3-butadiene		
		Particle in three dimensional box (no derivation)- Concept		
		of degeneracy of energy levels		
	3	Harmonic oscillator model, Schrodinger equation and		
		Energy levels (basic idea only, no derivation)	1	
	4	Spherical polar coordinates and Rigid rotor model (no		
		derivation, basic idea only), Expression for energy,	2	
		Spherical harmonics, Angular momentum		
	5	Quantum mechanics of Hydrogen-like atoms - Hamiltonian		
		operator of H-like systems, The Schrodinger equation in	3	
		spherical polar coordinates, separation of variables		
	6	Wave functions or atomic orbitals, radial and angular parts		
		of atomic orbitals. Quantum numbers (n, l, m).	2	
	7	The Stern - Gerlach experiment and the concept of electron		
		spin, spin quantum number.	2	
II		Solid state	10	22
	8	Classification of solids: Amorphous, Crystalline, Lattice	2	
		points, lattice energy (general idea), unit cell, seven crystal		
		systems.		
	9	Weiss and Miller indices - Bravais lattices, Close packing	1	
		in crystals, examples of simple cubic, bcc and fcc lattices,		
	10	Explanation of electrical properties using concepts of	2	
		bands, Explanation of conductors, semiconductors and		
		insulators, Super conductors		
	11	Magnetic Properties: classification - diamagnetic,	3	
		paramagnetic, antiferromagnetic, ferro and ferrimagnetic,		
		permanent and temporary magnets.		
	12	Defects in crystals – stoichiometric and non-stoichiometric	2	
		defects (Basic ideas only).		
III		Gaseous state - I	10	22

	13	Characteristics of gases	1	
	14	Postulates of kinetic theory of gases	2	
	15	Maxwell's distribution of molecular velocities – Root mean	3	
		square, average and most probable velocities.		
	16	Collision number – Mean free path – Collision diameter	1	
	17	Viscosity of gases, including their temperature and pressure	1	
		dependence,		
	18	Relation between mean free path and coefficient of	2	
		viscosity, calculation of σ from η ; variation of viscosity with		
		temperature and pressure.		
IV		Gaseous state -II	10	22
	19	Behaviour of real gases - Deviation from ideal behaviour –	3	
		Compressibility factor		
	20	Causes of deviation from ideal behaviour - van der Waals	4	
	-	equation of state (derivation not required) – Expression of		
		van der Waals equation in virial form and calculation of		
		Boyle temperature		
	21	PV isotherms of real gases – Continuity of states – Isotherm	1	
		of van der Waals equation		
	22	Critical phenomena (basic idea only) – Critical constants	2	
		and their determination (derivation not required) –		
		Relationship between critical constants and van der Waals		
		constants.		
V		Practical	30	
	A minir	num of seven experiments must be done. Out of the seven		
	experim	ents, one is to be open-ended which can be selected by the		
	teacher			
	1	Inorganic Qualitative Analysis (semi – micro analysis)	25	
		Reactions of Cations: Study of the reactions of the		
		following cations with a view of their identification		
		and confirmation. NH ₄ ⁺ , Pb ²⁺ , Cu ^{2+,} Cd ²⁺ , Al ³⁺ ,		
		Ni ²⁺ , Co ²⁺ , Mn ²⁺ , Zn ²⁺ , Ba ²⁺ , Sr ²⁺ , Ca ²⁺ , and Mg ²⁺		
		Systematic qualitative analysis of a solution		
		containing any two cations from the above list.		
	2	(Minimum 6 mixtures)	5	
	2	Open ended experiments—Physical chemistry experiments. (Any one experiment)	3	
		Suggestions		
		Determination of Physical Constants [Determination of		
		colligative properties, Determination of viscosity of a		
		binary liquid solution (Glycerol-water system)		
		Refractometry experiments etc]		
		Remacionicity experiments etc.]		

Reference Books

1. P. W. Atkins, J. de Paula, Atkin's Physical Chemistry, 8th Edn., Oxford University Press, 2006.

- 2. B. R. Puri, L. R. Sharma, M. S. Pathania, Principles of Physical Chemistry, 46th Edn., Vishal Publishing Company, New Delhi, 2013.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017.
- 4. G. M. Barrow, Physical Chemistry, 5th Edn., Tata McGraw Hill Education, New Delhi, 2006.
- 5. Anthony R. West, Solid State Chemistry and its Applications, 2nd Edn., Wiley-Blackwell, 2014.
- 6. L. V. Azaroff, Introduction to Solids, Tata McGraw Hill Publishing Company, New Delhi, 1960.
- 7. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, Vogel's Textbook of Qualitative Chemical Analysis, 6th Edn., Pearson Education, Noida, 2013.
- 8. V. V. Ramanujam, Inorganic Semi Micro Qualitative Analysis, 3rd Edn., The National Publishing Company, Chennai, 1974.
- 9. A. Findlay, Findlay's Practical Physical Chemistry, 9th Edn., John Wiley and Sons, New York, 1972.
- 10. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	O1	O2	O3	O4	O5	O6							
CO	2				2		1						
1													
CO	2				2		1						
2													
CO	2				2		1						
3													
CO	2				2		1						
4													
CO			2		2		1				1		
5													
CO			2		2		1				1		
6													

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low

2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	✓	✓		✓
CO2	✓	✓		✓
CO3	✓	✓		✓
CO4	✓	✓		✓
CO5	✓	✓	✓	
CO6	✓	✓	✓	

BSc CHEMISTRY

Programme	B.Sc Chemistry					
Course Title	LIQUID STATE,	GASEOUS	STATE AN	D ELECTR	OCHEMISTRY	
Type of Course	MINOR					
Semester	II					
Academic Level	100 - 199					
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours	
		per week	per week	per week		
	4	3	-	2	75	
Pre-requisites	1. Fundamentals of	Gaseous an	d Liquid stat	tes of matter		
	2. Basic principles	of Electroch	emistry			
	3. Basic knowledge	e in analytica	al principles			
Course Summary	1. This cours	e provides	the students	s a thorough	knowledge about	
	gaseous and liquid states of matter and the continuity between them.					
	2. This course aims to impart an idea about electrochemistry					
	3. This course a	also aims to d	levelop profi	ciency in qual	litative analysis and	
	to familiari	ze physical o	chemistry exp	periments		

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To apply the postulates of kinetic theory of gases.	Ap	F	Instructor-created exams / Quiz /Assignment
CO2	To describe the properties of liquids.	Е	С	Instructor-created exams / Quiz /Assignment
CO3	To analyse the behaviour of gases and liquids	An	С	Instructor-created exams / Quiz /Assignment
CO4	To illustrate the basic concepts of electrochemistry and its applications	U	С	Instructor-created exams / Quiz /Assignment
CO5	To perform the cation analysis on a provided mixture containing two cations.	An	P	Lab work

CO6	To enable the students to determine	Ap	P	Lab work			
	the physical properties (physical						
	constants).						
* - Re	member (R), Understand (U), Apply (A	Ap), Analyse (An), Evaluate (E), (Create (C)			
# - Fa	# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive						
Knowledge (M)							

Module	Unit	Content	Hrs (75)	Marks
I		Liquid State	15	34
	1	Introduction – Definition and characteristics of liquids - Vapour pressure, surface tension and viscosity - Explanation of these properties on the basis of intermolecular attraction.	4	
	2	Kinds of solutions –Solubility of gases in liquids – Henry's law and its applications	2	
	3	Raoult's law – Ideal and non-ideal solutions – Dilute solutions.	2	
	4	Colligative properties — Qualitative treatment of colligative properties — Relative lowering of vapour pressure — Elevation of boiling point,— Depression in freezing point — Osmotic pressure — Reverse osmosis and its applications	3	
	5	 Application of colligative properties in finding molecular weights (thermodynamic derivation not needed) – Abnormal molecular mass – Van't Hoff factor 	2	
	6	Introduction to liquid crystal phases. Types of liquid crystals: nematic, smectic, cholesteric.	1	
	7	Applications of liquid crystals.	1	
II		Gaseous State - I	10	20
	8	Characteristics of gases	1	
	9	Postulates of kinetic theory of gases	2	
	10	Maxwell's distribution of molecular velocities – Root mean square, average and most probable velocities.	3	
	11	Collision number – Mean free path – Collision diameter	1	
	12	Viscosity of gases, including their temperature and pressure dependence,	1	

	13	Relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure.	2	
III		Gaseous State - II	10	22
	14	Behaviour of real gases - Deviation from ideal behaviour - Compressibility factor	3	
	15	Causes of deviation from ideal behaviour - van der Waals equation of state (derivation not required) – Expression of van der Waals equation in virial form and calculation of Boyle temperature	4	
	16	PV isotherms of real gases – Continuity of states – Isotherm of van der Waals equation	1	
	17	Critical phenomena (basic idea only) – Critical constants and their determination (derivation not required) – Relationship between critical constants and van der Waals constants.	2	
IV		10	22	
	18	Specific conductance, equivalent conductance and molar conductance	2	
	19	Variation of conductance with dilution - Kohlrausch's law - Degree of ionization of weak electrolytes	2	
	20	Application of conductance measurements – Conductometric titrations.	1	
	21	Galvanic cells – emf of cell and electrode potentials - IUPAC sign convention – Reference electrodes – Standard Hydrogen electrode – Calomel electrode - Standard electrode potential - Nernst equation	2	
	22	H ₂ -O ₂ fuel cell. Ostwald's dilution law – Buffer solutions – Buffer action [acetic acid/sodium acetate & NH ₄ OH/NH ₄ Cl], applications of buffers.	3	
V		Practical	30	
		nimum of seven experiments must be done. Out of the seven iments, one is to be open-ended which can be selected by the er		
	1	 a) Inorganic Qualitative Analysis (semi – micro analysis) Reactions of Cations: Study of the reactions of the following cations with a view of their identification and 	25	

	 confirmation. NH₄⁺, Pb²⁺, Cu²⁺, Cd²⁺, Al³⁺, Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺, Ba²⁺, Sr²⁺, Ca²⁺, and Mg²⁺ Systematic qualitative analysis of a solution containing any two cations from the above list. (Minimum 6 mixtures) 		
2	b) Open ended experiments— Physical chemistry experiments. (Any one experiment) Suggestions Determination of Physical Constants [Determination of colligative properties, Determination of viscosity of a binary liquid solution (Glycerol-water system) Refractometry experiments etc.]	5	

Reference Books

- 1. P. W. Atkins, J. de Paula, Atkin's Physical Chemistry, 8th Edn., Oxford University Press, 2006.
- 2. B. R. Puri, L. R. Sharma, M. S. Pathania, Principles of Physical Chemistry, 46th Edn., Vishal Publishing Company, New Delhi, 2013.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017.
- 4. G. M. Barrow, Physical Chemistry, 5th Edn., Tata McGraw Hill Education, New Delhi, 2006.
- 5. S. Glasstone, Introduction to Electrochemistry, East-West Press Pvt. Ltd., New Delhi, 2007.
- 6. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, Vogel's Textbook of Qualitative Chemical Analysis, 6th Edn., Pearson Education, Noida, 2013.
- 7. V. V. Ramanujam, Inorganic Semi Micro Qualitative Analysis, 3rd Edn., The National Publishing Company, Chennai, 1974.
- 8. A. Findlay, Findlay's Practical Physical Chemistry, 9th Edn., John Wiley and Sons, New York, 1972.
- 9. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	O1	O2	O3	O4	O5	O6							
CO	2				2		1						
1													
CO	2				2		1						
2													
CO	2				2		1						
3													
CO	2				2		1						
4													
CO			2		2		1				1		
5													
CO			2		2		1				1		
6													

Correlation Levels:

Level	Correlation
0	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	✓	✓		✓
CO2	✓	✓		✓
CO3	✓	✓		✓
CO4	✓	✓		✓
CO5	✓	✓	✓	
CO6	✓	✓	✓	

BSc CHEMISTRY

Programme	B.Sc Chemistry						
Course Title	STATES OF MA	TTER AND	NUCLEAR	R CHEMIST	RY		
Type of Course	MINOR						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture	Tutorial	Practical	Total Hours		
		per week	per week	per week			
	4	3	-	2	75		
Pre-requisites	1. Fundamentals of	f Gaseous an	d Liquid stat	tes of matter			
	2. Basic idea about	nucleons					
	3. Basic knowledge	e in analytic	al principles				
Course Summary	1. This cours	e provides	the students	s a thorough	knowledge about		
	<u> </u>				uity between them.		
	2. This course aims to introduce the applications of nuclear chemistry						
	3. This course also aims to develop proficiency in qualitative analysis and						
	to familiari	ze physical o	chemistry exp	periments			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	To understand the fundamental	U	F	Instructor-created
	concepts and the properties of			exams / Quiz
	gaseous state and how it relates to			/Assignment
	thermodynamic systems.			
CO2	To understand the behaviour of	E	C	Instructor-created
	ideal and non-ideal solutions			exams / Quiz
				/Assignment
CO3	To analyse the properties of gases	An	С	Instructor-created
	and liquids.			exams / Quiz
				/Assignment
CO4	To apply the theories of different	Ap	F	Instructor-created
	states of matter and understand			exams / Quiz
	their implications.			/Assignment

CO5	To describe various processes in	U	C	Instructor-created
	nuclear chemistry			exams / Quiz
				/Assignment
CO6	To analyse cations from a given	An	P	Lab work
	mixture and enable the students to			
	determine the physical constants.			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Module	Unit	Unit Content		Marks
I		Gaseous State - I	10	22
	1	Characteristics of gases	1	
	2	Postulates of kinetic theory of gases	2	
	3	Maxwell's distribution of molecular velocities – Root mean square, average and most probable velocities.	3	
	4	Collision number – Mean free path – Collision diameter	1	
	5	Viscosity of gases, including their temperature and pressure dependence,	1	
	6	Relation between mean free path and coefficient of viscosity, calculation of σ from η ; variation of viscosity with temperature and pressure.	2	
II		Gaseous State - II	10	22
	7	Behaviour of real gases - Deviation from ideal behaviour - Compressibility factor	3	
	8	Causes of deviation from ideal behaviour - van der Waals equation of state (derivation not required) – Expression of van der Waals equation in virial form and calculation of Boyle temperature	4	
	9	PV isotherms of real gases – Continuity of states – Isotherm of van der Waals equation	1	
	10	Critical phenomena (basic idea only) – Critical constants and their determination (derivation not required) –	2	

^{# -} Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

		Relationship between critical constants and van der Waals constants.		
III		15	32	
	11	Introduction – Definition and characteristics of liquids - Vapour pressure, surface tension and viscosity - Explanation of these properties on the basis of intermolecular attraction.	4	
	12	Kinds of solutions –Solubility of gases in liquids – Henry's law and its applications	2	
	13	Raoult's law – Ideal and non-ideal solutions – Dilute solutions.	2	
	14	Colligative properties – Qualitative treatment of colligative properties – Relative lowering of vapor pressure – Elevation of boiling point, – Depression in freezing point – Osmotic pressure – Reverse osmosis and its applications	3	
	15	 Application of colligative properties in finding molecular weights (thermodynamic derivation not needed) – Abnormal molecular mass – Van't Hoff factor 	2	
	16	Introduction to liquid crystal phases. Types of liquid crystals: nematic, smectic, cholesteric.	1	
	17	Applications of liquid crystals.	1	
IV	Nuclear Chemistry			22
	18	Natural radioactivity – Modes of decay – Group displacement law.	2	
	19	Nuclear forces - n/p ratio - Nuclear stability - Mass Defect - Binding energy	2	
	10	Isotopes, isobars and isotones with examples. Nuclear fission - Atom bomb - Nuclear fusion - Hydrogen bomb	1	
	21	Nuclear reactors	1	
	22	Application of radioactive isotopes – ¹⁴ C dating, Rock dating, Isotopes as tracers, Radio diagnosis, Radiotherapy. Problems	4	
V		Practical	30	

sever	inimum of seven experiments must be done. Out of the n experiments, one is to be open-ended which can be ted by the teacher		
1	 a) Inorganic Qualitative Analysis (semi – micro analysis) Reactions of Cations: Study of the reactions of the following cations with a view of their identification and confirmation. NH₄⁺, Pb²⁺, Cu²⁺, Cd²⁺, Al³⁺, Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺, Ba²⁺, Sr²⁺, Ca²⁺, and Mg²⁺ Systematic qualitative analysis of a solution containing any two cations from the above list. (Minimum 6 mixtures) 	25	
2	b) Open ended experiments— Physical chemistry experiments. (Any one experiment) Suggestions Determination of Physical Constants [Determination of colligative properties, Determination of viscosity of a binary liquid solution (Glycerol-water system) Refractometry experiments etc.]	5	

Reference Books

- 1. Atkins P. W. & Paula, J. de, Elements of Physical Chemistry, Oxford University Press, 6th Ed., (2006).
- 2. Puri, Sharma &Pathania, Principles of Physical Chemistry, Vishal Publishing Co, 47th Edn., 2017.
- 3. Kapoor K. L., Text Book of Physical Chemistry, McGraw Hill, 3rd Edn. 2017 G. M. Barrow, Physical Chemistry, 5th Edn., Tata McGraw Hill Education, New Delhi, 2006.
- 4. 1. H. J. Arnikar, Essentials of Nuclear Chemistry, 4th Edn., New Age International (P) Ltd., New Delhi, 1995
- 5. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, Vogel's Textbook of Qualitative Chemical Analysis, 6th Edn., Pearson Education, Noida, 2013.
- 6. V. V. Ramanujam, Inorganic Semi Micro Qualitative Analysis, 3rd Edn., The National Publishing Company, Chennai, 1974.
- 7. A. Findlay, Findlay's Practical Physical Chemistry, 9th Edn., John Wiley and Sons, New York, 1972.
- 8. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publications, Meerut, 2008.

Mapping of COs with PSOs and POs

	PS	PS	PS	PS	PS	PS	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	O1	O2	O3	O4	O5	06							
CO	2				2		1						
1													
CO	2				2		1						
2													
CO	2				2		1						
3													
CO	2				2		1						
4													
CO	2				2		1						
5													
CO			2		2		1				1		
6													

Correlation Levels:

Level	Correlation		
0	Nil		
1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

Assessment Rubrics:

- Quiz / Discussion / Seminar
- Internal Theory / Practical exam
- Assignments / Viva
- End Semester Exam (70%)

Mapping of COs to Assessment Rubrics

	Internal Theory / Practical Exam	Assignment / Viva	Practical Skill Evaluation	End Semester Examination
CO1	✓	✓		✓
CO2	✓	✓		✓
CO3	✓	✓		✓
CO4	✓	✓		✓
CO5	✓	✓		✓
CO6	✓	✓	✓	

BSc CHEMISTRY

Programme	B. Sc. Chemistry									
Course Title	CHEMISTRY	CHEMISTRY IN DAILY LIFE								
Type of Course	MDC									
Semester	II	II								
Academic	100-199									
Level										
Course Details	Credit	Lecture per	Tutorial	Practical	Total Hours					
		week	per week	per week						
	3	3	-	-	45					
Pre-requisites	Role of chemic	als in or life.								
	Basic idea of en	nvironmental p	ollution.							
Course	This course ensures that the students acquire a profound knowledge and									
Summary	understanding of	on chemicals th	hat are used in	daily life.						

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Know the different chemicals that sustain our life	U	С	Instructor-created exams / Quiz
CO2	Understand the role of chemistry in forensic analysis.	U	С	Instructor-created exams / Seminar
CO3	Understand the application of chemistry in agriculture and need of green methods	U	С	Instructor-created exams /Assignment
CO4	Understand the chemistry of soaps, synthetic detergents and their environmental effects.	U	С	Instructor-created exams / Seminar
CO5	Understand the chemistry of cosmetics and the effect on health.	U	С	Instructor-created exams / Quiz

CO6	Understand the	U	С	Seminar/Viva
	chemistry of drugs,food additives their action			
	and possible side			
	effects			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

Module	Unit	Hrs	Marks	
I		Chemistry in Biological Systems & Forensic Chemistry	12	22
	1	Vitamins and Minerals: Name, source, function and deficiency	2	
		diseases.		
	2	Enzymes - Classifications, characteristics, examples.	1	
	3	Hormones - Sex hormones - example, function. Pheromones.	2	
	4	Brain chemicals and human mood variations	1	
	5	General discussion of poisons with special reference to mode of action	2	
		of cyanide, organophosphates and snake venom.		
	6	Detection of finger print, blood stain, semen, Breath analyzer	2	
	7	Sport doping-Steroids-Anabolic agents, Stimulants, Diuretics	2	
II		Chemistry and Agriculture	6	12
	8	Essential nutrients for plants – NPK value	1	
		Chemical composition of soil, Soil enrichment		
	9	Fertilizers- natural, synthetic, mixed, NPK fertilizers. Excessive use	2	
		of fertilizers and its impact on the environment. Bio fertilizers.		
	10	Pesticides: Classification – Insecticides, herbicides, rodenticides and	2	
		fungicides (definition and examples only) – Non-degradable pesticides		
	11	Pesticide pollution and its impact on	1	
		environment – Endosulfan disaster in Kerala (brief study).		
III		Cleansing agents and cosmetics	9	18
	12	Soaps – Hard and soft soaps – Alkali content – TFM – Detergents	3	
		(classification) – Cleaning action – Advantages and disadvantages of		
		soaps and detergents –		
	13	Shampoos: Ingredients and functions – Different kinds of shampoos	1	
		(Antidandruff, anti-lice, herbal and baby shampoos).		
	14	Tooth paste: Composition and health effects.	1	
		Hair dye: Chemicals used and its harmful effects.		
	15	Face and skin powders:	2	
	13	Types, ingredients and functions. Cleansing creams: Cold creams,		
		vanishing creams and bleach creams.		
		vamsing cicams and bicach cicams.		

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

	16	Perfumes, antiperspirants, sun screen preparations, nail polishes,	2			
		lipsticks, rouges, eyebrow pencils and eye liners (ingredients and				
		functions) – Harmful effects of cosmetics.				
IV	Pharmaceuticals and Dyes					
	17	Drug: Chemical name, generic name and trade names with examples.	1			
	18	Terminology: Prodrug, pharmacy, pharmacology, pharmacophore,	2			
		pharmacognosy, pharmacodynamics and pharmacokinetics				
		(elementary idea only).				
	19	Antipyretics, analgesics, antacids, antihistamines, antibiotics,	2			
		antiseptics, disinfectants, anaesthetics, tranquilizers, narcotics,				
		antidepressants and psychedelic drugs (definition and examples).				
	20	Dyes: classification based on constitution, application, examples, uses.	2			
	21	Dyes: Requirements of a dye – Classification based on mode of	1			
		application to the fabric –				
	22	Applications of dyes (general study). Ancient and modern colours –	1			
		Mention of indigo and alizarin.				
V		Food Chemistry (OPEN ENDED)	9			
	23	Common adulterants				
		Food Additives:				
		Artificial sweeteners – Taste enhancers				
		Artificial ripening of fruits and its side effects.				
		Modern Food Habits:				

References

- 1. M. V. Kulkarni, *Biochemistry*, Pragati Books Pvt. Ltd., 2008.
- 2. S. C. Rastogi, *Biochemistry*, 2nd Edn., Tata McGraw Hill Publishing Co., New Delhi, 2007.
- 3. U. Satyanarayana, U. Chakrapani, *Biochemistry*, Elsevier Health Sciences, 2014.
- 4. N. V. Bhagavan, *Medical Biochemistry*, Academic Press, 2002.
- 5. Pharmaceutical Analysis, T. Higuchi and E.B. Hanseen, John Wiley and Sons, New York.
- 6. Quantitative Analysis of drugs, P.D. Sethi, 3rd edition, CBS Publishers, New Delhi, 1997.
- 7. Practical Clinical biochemistry methods and interpretations, R. Chawala, J.P. Brothers Medical Publishers (P) Ltd., 1995.
- 8. Laboratory manual in biochemistry, J. Jayaraman. New Age International Publishers, New Delhi, 1981.
- 9. H. S. Rathore, L. M. L. Nollet, *Pesticides: Evaluation of Environmental Pollution*, CRC Press, USA, 2012.
- 10. Murray Park, The Fertilizer Industry, Elsevier, 2001.
- 11. B. K. Sharma, *Industrial Chemistry*, Krishna Prakashan Media, 1991.
- 12. M. S. R. Winter, *A Consumer's Dictionary of Cosmetic Ingredients*, 7th Edn., Three Rivers Press, New York, 2009.
- 13. Gurdeep R. Chatwal, Synthetic Drugs, Himalaya Publishing House, Bombay, 1995.
- 14. Jayashree Ghosh, *A Textbook of Pharmaceutical Chemistry*, 3rd Edn., S. Chand and Company Ltd., New Delhi, 1999.
- 15. Lillian Hoagland Meyer, *Food Chemistry*, 1st Edn., CBS Publishers & Distributors, New Delhi, 2004.
- 16. B. A. Fox, A. G. Cameron, E. Arnold, *Food Science*, Nutrition and Health, 6th Edn., Edward Arnold, London, 1995.

- 17. A. Siddiqui, N. Anusha, *Deleterious Effects of Food Habits in Present Era*, J. Aller. Ther. 3:114, 2012.
- 18. H. S. Ramaswamy, M. Marcotte, *Food Processing: Principles and Applications*, CRC Press, 2005.
- 19. A. F. Smith, *Encyclopedia of Junk Food and Fast Food*, Greenwood Publishing Group, 2006.
- 20. T. A. M. Sagati, The Chemistry of Food Additives and Preservatives, John Wiley & Sons, 2012.
- 21. S. N. Mahindru, Food Additives, APH Publishing, 2009.
- 22. Biju Mathew, Anchor India, Info Kerala Communications Pvt. Ltd., 2015.

Mapping of COs with PSOs and POs:

	PSO 1	PSO 2	PSO 3	PSO4	PS O5	PSO 6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	1	1	1	1	1	1			2	1		
CO 2	1		1	1	1	1	1			1	1		1
CO 3	-	-		1	2	2	1			2	2		1
CO 4	-	-			1	2	1			1	1	1	1
CO 5	-		-	1	2	2	1			2	2	1	1
CO 6	-	-	-	1	2	2	1			2	2	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate /
	Medium
3	Substantial /
	High

Assessment Rubrics:

- Quiz / Assignment/ Quiz/ Discussion / Seminar
- Midterm Exam
- Programming Assignments (20%)
- Final Exam (70%)

Mapping of COs to Assessment Rubrics :

	Internal Exam	Assignm ent/viva	Quiz/seminar/ Goupdiscussio n	End Semester Examinations
CO 1	✓		√	√
CO 2	✓		√	✓
CO 3	√	√		√
CO 4	✓		√	√
CO 5	√		√	√
CO 6		√	√	